acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research under Grant No. PRF 1704-A5. The computations were carried out on the IBM 7040 computer with our own programs, and we thank the staff of the University of British Columbia Computing Centre for assistance.

References

Camerman, N. \& Trotter, J. (1964). Acta Cryst. 17, 384.
Coxon, B. \& Fletcher, H. G. (1963). J. Amer. Chem. Soc.
85, 2637.

Coxon, B. \& Hall, L. D. (1964). Tetrahedron, 20, 1685.
Dyer, H. B. (1951). Acta Cryst. 4, 42.
Fuller, W. (1959). J. Phys. Chem. 63, 1705.
Furnas, T. C. (1957). Single-Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jeffrey, G. A. \& Rosenstein, R. D. (1964). Advanc. Carbohyd. Chem. 19, 1.
Karplus, M. (1959). J. Chem Phys. 30, 11.
Karplus, M. (1963). J. Amer. Chem. Soc. 85, 2870.

II. The Crystal Structure of 2,2-Dichloro-4,4,6,6-tetraphenylcyclotriphosphazatriene

By N. V. Mani*, F. R. Ahmed and W.H.Barnes
Pure Physics Division, National Research Council, Ottawa 7, Canada

(Received 31 January 1966)

Abstract

The crystal structure of 2,2-dichloro-4,4,6,6-tetraphenylcyclotriphosphazatriene, $\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$, has been determined by three-dimensional Patterson, Fourier, and difference syntheses. It has been refined to an R index of 0.09_{1} by differential-synthesis and least-squares methods. The crystals are monoclinic, with $a=25.117, b=23.610, c=18.931 \AA, \beta=117^{\circ} 50^{\prime}, Z=16$, space group $C 2 / c$. In the asymmetric unit there are two molecules which are related by translations of almost $\frac{1}{4}, \frac{1}{4}, 0$ along the directions of the three principal axes. The cyclotriphosphazene ring, $\mathrm{P}_{3} \mathrm{~N}_{3}$, has a slight boat form in contrast to the slight chair form in the diphenyltetrachloro compound. As in the latter there are three sets of $\mathrm{P}-\mathrm{N}$ bonds of different lengths, $1.556,1.578,1.609 \AA$ averaged over the two molecules in the asymmetric unit in the present case. Taking the means for these two molecules, the exocyclic $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ angle is 98.5°, the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle is 104.4°, the two types of $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle are 120.7° and 115.5°, and the two types of P-N-P angle are 121.0° and 124.9°. A few average bond lengths are $1.792 \AA$ for $\mathrm{P}-\mathrm{C}, 2.017 \AA$ for $\mathrm{P}-\mathrm{Cl}$, and only $1.376 \AA$ for $\mathrm{C}-\mathrm{C}$. The last is virtually identical with the average length of the $\mathrm{C}-\mathrm{C}$ bond in diphenyltetrachlorocyclotriphosphazene.

Introduction

The crystal structure of 2,2-diphenyl-4,4,6,6-tetrachlorocyclotriphosphazatriene, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$, was recently determined in this laboratory (Mani, Ahmed \& Barnes, 1965). The present paper is concerned with the structure of 2,2-dichloro-4,4,6,6-tetraphenylcyclotriphosphazatriene, $\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$, the schematic formula of which is shown in Fig. 1 of Mani, Ahmed \& Barnes (1965). Whereas crystals of diphenyltetrachlorocyclotriphosphazene showed no extraneous diffraction effects, those of the dichlorotetraphenyl compound presented some difficulties arising from a propensity for reflection twinning across (001), disorder (shown by streaked rows parallel to c^{*} and confined almost exclusively to the odd-numbered $a^{*} c^{*}$ and $b^{*} c^{*}$ nets) which appears to be dependent upon the temperature at which the crystals are grown from light petroleum,

[^0]and (in one case) the appearance of satellite spots on the streaked rows which vitiates the mirror symmetry across c^{*} in the odd-numbered $b^{*} c^{*}$ nets and the diad axis in the corresponding $a^{*} c^{*}$ nets. Of nine crystals examined, the one selected for the structure investigation showed no evidence of twinning, no satellite spots, and only relatively light streaking of reciprocal lattice rows parallel to c^{*} on precession photographs even after exposure times of 100 to 200 hours with copper radiation (Ni filter). For all practical purposes, therefore, the selected crystal was virtually ordered. A description and discussion of the interesting diffraction effects observed with the other crystals may be given later in a separate communication.

Crystal data

The crystal employed for the determination of the unitcell constants and for the collection of intensity data was grown from a light-petroleum solution at $0^{\circ} \mathrm{C}$. It
was prismatic with $\{110\}$ and $\{\overline{1} 10\}$ as the predominant forms, and it had dimensions of $0.12 \times 0.15 \times 0.33 \mathrm{~mm}$.
Dichlorotetraphenylcyclotriphosphazene is monoclinic with $a=25 \cdot 117(\sigma=0.006), b=23 \cdot 610(\sigma=0.008)$, $c=18.931(\sigma=0.008) \AA, \quad \beta=117^{\circ} 50^{\prime} \quad\left(\sigma=5^{\prime}\right), \quad U=$ $9927 \cdot 54 \AA^{3}$, F.W. $514 \cdot 28, D_{m}$ (flotation in aqueous potassium iodide solution) $=1 \cdot 37_{3} \mathrm{~g} . \mathrm{cm}^{-3}$ at $22^{\circ} \mathrm{C}, Z=16$, $D_{c}=1.376 \mathrm{~g} . \mathrm{cm}^{-3}, \mu(\mathrm{Cu})=82.7 \mathrm{~cm}^{-1}, \mu(\mathrm{Mo})=4.8$ $\mathrm{cm}^{-1}, F(000)=4224$.

Possible space groups are $C c$ (no.9) and $C 2 / c$ (no.15) with $h k l$ absent when $h+k=2 n+1$ and $h 0 l$ absent when $l=2 n+1(h=2 n+1)$. It will be shown that $C 2 / c$ is the probable space group with two molecules in the asymmetric unit, and that these molecules are related by translations of almost $\frac{1}{4}, \frac{1}{4}, 0$ along the directions of the three principal axes. It may be noted that if this relationship were exact a systematic non-space-group set of extinctions would occur, namely, $h k l$ absent when h and k are both even and $h+k= \pm(4 n+2)$.

Data collection

Final unit-cell and intensity data were collected on an XRD-5 scintillation-counter diffractometer as described previously (Mani, Ahmed \& Barnes, 1965) except that Nb filters were employed for the Mo radiation.
So few reflections were observed outside the sphere corresponding to $\sin \theta / \lambda=0.542$ that the intensity measurements were confined to this volume of reciprocal space, which contains 13,670 non-equivalent $h k l$ and $h k l$ reciprocal lattice sites. Reflections corresponding to 7043 of these are prohibited by the space-group symmetry; 4599 possible reflections were not observed, and only 2028 were observed. The net intensity counts of the observed reflections were placed on the same relative scale, appropriate $1 / \mathrm{Lp}$ corrections were applied, but no absorption corrections were considered necessary.

Structure analysis

The positions of the P, Cl, and N atoms were established from a three-dimensional sharpened Patterson synthesis. The presence of a strong vector concentration at the mesh point $\frac{1}{4}, \frac{1}{4}, 0$ in Patterson space with a value of more than 50% of that at the origin was particularly suggestive and later served to confirm the translational relationship between the two molecules in the asymmetric unit of the structure. The C atoms were located from a Fourier synthesis based on 88% of the observed data and the contributions of the P, Cl, and N atoms. The R index for this initial structure was 0.26 .
Two cycles of differential syntheses, assuming the two molecules in the asymmetric unit to be independent and applying isotropic temperature factors to all atoms, reduced the R index to $0 \cdot 16$. A difference synthesis showed that the structure must be basically correct and also indicated the sites of most of the hydrogen atoms. After four cycles of least squares with the coordinates
of all atoms except hydrogen, anisotropic thermal parameters for P, Cl, and N , but isotropic for C , the R index was $0 \cdot 10$, and it was clear that corresponding atoms of the two molecules in the asymmetric unit were separated by translations of almost, if not exactly, $\frac{1}{4}, \frac{1}{4}, 0$ along the directions of the three principal axes. This accounted for the exceptionally high vector concentration in the Patterson synthesis, and the fact that only 63 reflections, all relatively weak, out of 1634 possible ones with h and k both even and $h+k= \pm(4 n$ +2) were above threshold values.
The positions of the hydrogen atoms were refined on the basis of a second difference synthesis, but the variations in length (1.27 to $1.45 \AA$) among some of the C-C bonds were not satisfactory. Three more cycles of least squares and two of differential syntheses (including the contributions of the hydrogen atoms in the structure-factor calculation), therefore, were carried out, after which the indicated shifts did not contribute significant changes to the bond lengths or angles. A final difference synthesis (omitting the hydrogen atoms) showed residual electron densities within ± 0.5 e. \AA^{-3} near some of the atomic positions and a general background within ± 0.3 e. \AA^{-3}. The final R index (hydrogen atoms included) for all the observed data was 0.091 .

The atomic scattering-factor curves employed in the structure-factor calculations were taken from International Tables for X-ray Crystallography (1962).

Results

A perspective view of a molecule derived from the coordinates of the two molecules in the asymmetric unit is illustrated in Fig.1. The final coordinates of the N, P, Cl, and C atoms and their e.s.d.'s (calculated with the expressions of Cruickshank $(1949,1950)$ and increased by a factor of 1.50 to allow for the large proportion of unobserved reflections) are listed in Table 1 separately for the two molecules in the asymmetric unit. The observed and calculated electron densities and mean curvatures for all atoms except H , together with

Fig. 1. Perspective view of a molecule derived from the coordinates of the two molecules in the asymmetric unit.
the anisotropic thermal parameters for the N, P, and Cl atoms, are given for both molecules in Table 2; similar data for the C atoms but with the isotropic temperature factor B are shown in Table 3. The coordinates of the hydrogen atoms, and the electrondensity maxima of those derived from the final difference synthesis are collected in Table 4, where each H has been assigned the same number as the C to which it is attached.

Table 1. Fractional atomic coordinates (e.s.d.'s $\times 10^{4} \AA$ in parentheses) Molecule I

Atom	x	y	z
$\mathrm{N}(1)$	$0 \cdot 1933$ (72)	-0.0874 (69)	-0.0619 (75)
P (2)	0.1759 (30)	-0.0863 (33)	$0 \cdot 0068$ (32)
N(3)	$0 \cdot 1969$ (84)	-0.0374 (83)	0.0688 (80)
P(4)	$0 \cdot 2428$ (30)	$0 \cdot 0104$ (32)	0.0700 (30)
N(5)	$0 \cdot 2546$ (72)	0.0104 (77)	-0.0050 (59)
$\mathrm{P}(6)$	$0 \cdot 2300$ (30)	-0.0356 (30)	-0.0735 (29)
$\mathrm{Cl}(1)$	0.0863 (39)	-0.0945 (48)	-0.0392 (50)
$\mathrm{Cl}(2)$	$0 \cdot 2002$ (47)	-0.1619 (39)	0.0642 (42)
C(1)	$0 \cdot 3123$ (102)	$0 \cdot 0011$ (128)	$0 \cdot 1608$ (111)
C(2)	$0 \cdot 3174$ (146)	-0.0367 (141)	0.2204 (147)
C(3)	$0 \cdot 3733$ (194)	-0.0425 (152)	$0 \cdot 2890$ (179)
C(4)	$0 \cdot 4211$ (192)	-0.0097 (221)	$0 \cdot 2957$ (287)
C(5)	$0 \cdot 4156$ (164)	$0 \cdot 0288$ (189)	$0 \cdot 2397$ (213)
C(6)	$0 \cdot 3621$ (122)	0.0330 (161)	$0 \cdot 1726$ (129)
C(7)	$0 \cdot 2169$ (110)	$0 \cdot 0795$ (117)	0.0792 (87)
C(8)	$0 \cdot 1984$ (113)	$0 \cdot 0879$ (141)	$0 \cdot 1372$ (101)
C(9)	$0 \cdot 1776$ (147)	$0 \cdot 1433$ (125)	$0 \cdot 1445$ (123)
$\mathrm{C}(10)$	$0 \cdot 1739$ (158)	$0 \cdot 1854$ (173)	$0 \cdot 0951$ (176)
C(11)	$0 \cdot 1914$ (137)	$0 \cdot 1756$ (192)	$0 \cdot 0343$ (165)
C(12)	0.2131 (159)	$0 \cdot 1222$ (126)	0.0304 (189)
C(13)	$0 \cdot 1810$ (111)	-0.0036 (107)	-0.1675 (116)
C(14)	$0 \cdot 2007$ (138)	$0 \cdot 0435$ (140)	-0.1951 (149)
C(15)	$0 \cdot 1627$ (228)	0.0682 (156)	-0.2680 (153)
C(16)	$0 \cdot 1080$ (407)	$0 \cdot 0460$ (279)	-0.3148 (198)
C(17)	0.0899 (170)	-0.0005 (276)	-0.2880 (185)
C(18)	$0 \cdot 1277$ (198)	-0.0254 (156)	-0.2149 (143)
C(19)	$0 \cdot 2906$ (111)	-0.0625 (122)	-0.0867 (93)
C(20)	$0 \cdot 3476$ (117)	-0.0432 (123)	-0.0441 (129)

		Molecule II	
Atom	x	y	z
C(21)	$0 \cdot 3956$ (138)	-0.0648 (159)	-0.0540 (171)
C(22)	$0 \cdot 3845$ (167)	-0.1056 (152)	-0.1062 (152)
C(23)	$0 \cdot 3278$ (189)	-0.1275 (170)	-0.1541 (167)
C(24)	$0 \cdot 2812$ (126)	-0.1034 (152)	-0.1435 (119)
$\mathrm{N}(1)$	0.4426 (84)	$0 \cdot 1613$ (75)	-0.0596 (75)
P (2)	0.4259 (32)	0.1623 (32)	0.0091 (32)
$\mathrm{N}(3)$	0.4470 (86)	$0 \cdot 2127$ (83)	0.0706 (89)
P(4)	0.4937 (30)	$0 \cdot 2590$ (33)	0.0726 (30)
$\mathrm{N}(5)$	$0 \cdot 5050$ (72)	0.2592 (77)	-0.0029 (57)
$\mathrm{P}(6)$	0.4801 (33)	0.2136 (32)	-0.0714 (30)
$\mathrm{Cl}(1)$	0.3365 (41)	0.1543 (50)	-0.0355 (57)
$\mathrm{Cl}(2)$	0.4510 (41)	0.0874 (39)	0.0675 (42)
C(1)	0.5627 (96)	$0 \cdot 2490$ (116)	$0 \cdot 1638$ (116)
C(2)	$0 \cdot 5672$ (188)	$0 \cdot 2128$ (153)	$0 \cdot 2209$ (138)
C(3)	$0 \cdot 6231$ (189)	$0 \cdot 2092$ (275)	$0 \cdot 2925$ (177)
C(4)	$0 \cdot 6694$ (204)	$0 \cdot 2372$ (212)	$0 \cdot 3054$ (216)
C(5)	$0 \cdot 6652$ (182)	$0 \cdot 2736$ (294)	$0 \cdot 2457$ (239)
C(6)	0.6113 (152)	$0 \cdot 2798$ (185)	$0 \cdot 1727$ (158)
$\mathrm{C}(7)$	0.4669 (113)	$0 \cdot 3285$ (141)	0.0830 (90)
C(8)	0.4499 (129)	$0 \cdot 3375$ (131)	$0 \cdot 1408$ (108)
C(9)	0.4315 (128)	$0 \cdot 3907$ (128)	$0 \cdot 1508(140)$
$\mathrm{C}(10)$	$0 \cdot 4293$ (218)	$0 \cdot 4332$ (177)	$0 \cdot 1020$ (212)
C(11)	0.4446 (176)	$0 \cdot 4256$ (147)	0.0436 (216)
$\mathrm{C}(12)$	$0 \cdot 4658$ (135)	$0 \cdot 3722$ (143)	0.0344 (186)
C(13)	0.4319 (113)	$0 \cdot 2448$ (107)	-0.1671 (101)
C(14)	$0 \cdot 4515$ (149)	$0 \cdot 2918$ (135)	-0.1952 (156)
$\mathrm{C}(15)$	$0 \cdot 4135$ (246)	$0 \cdot 3158$ (176)	-0.2700 (143)
C(16)	$0 \cdot 3577$ (713)	$0 \cdot 2942$ (308)	-0.3148 (267)
C(17)	0.3382 (185)	$0 \cdot 2482$ (269)	-0.2870 (191)
C(18)	0.3761 (221)	$0 \cdot 2242$ (176)	-0.2127 (179)
C(19)	$0 \cdot 5400$ (125)	$0 \cdot 1851$ (113)	-0.0830 (95)
C(20)	0.5971 (113)	$0 \cdot 2055$ (137)	-0.0398 (126)
C(21)	$0 \cdot 6458$ (153)	$0 \cdot 1823$ (174)	-0.0503 (179)
C(22)	0.6349 (173)	$0 \cdot 1413$ (153)	-0.1042 (149)
C(23)	0.5807 (192)	$0 \cdot 1200$ (152)	-0.1450 (147)
C(24)	$0 \cdot 5324$ (165)	$0 \cdot 1426$ (147)	-0.1372 (134)

The complete structure-factor table based on the final parameters has been deposited in the National Science Library of Canada at the National Research Council, Ottawa. An agreement summary (Ahmed \&

Table 2. Electron densities $\left(\mathrm{e} . \AA^{-3}\right)$, mean curvatures $\left(\mathrm{e} . \AA^{-5}\right)$ and anisotropic thermal parameters $\left(\times 10^{5}\right)$ for the N, P, and Cl atoms from the expression $T=\exp -\left(B_{11} h^{2}+B_{22} k^{2}+B_{33} l^{2}+B_{23} k l+B_{13} h l+B_{12} h k\right)$

Molecule I										
Atom	@o	Qc	$-\varrho_{0}{ }^{\prime \prime}$	$-\varrho_{c}{ }^{\prime \prime}$	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
N(1)	$7 \cdot 78$	$7 \cdot 86$	$47 \cdot 1$	$48 \cdot 6$	324	189	387	- 176	614	-252
P (2)	17.96	$18 \cdot 24$	$107 \cdot 7$	108.9	187	214	336	-62	248	-123
$\mathrm{N}(3)$	$7 \cdot 00$	7.07	41.4	$41 \cdot 8$	273	236	543	-300	474	-280
P (4)	18.37	18.74	$110 \cdot 7$	$112 \cdot 2$	203	201	329	- 122	308	-99
N(5)	7.91	7.91	$50 \cdot 2$	$51 \cdot 2$	323	256	288	- 196	565	-189
P (6)	18.86	19.00	114.8	115.0	200	194	265	- 106	302	-31
$\mathrm{Cl}(1)$	14.61	14.61	75.0	$74 \cdot 3$	203	392	713	-214	315	- 128
$\mathrm{Cl}(2)$	$14 \cdot 84$	$15 \cdot 08$	$80 \cdot 2$	$80 \cdot 6$	431	225	643	182	512	47
Molecule II										
Atom	ϱ o	ϱ_{c}	$-\varrho_{0}{ }^{\prime \prime}$	$-Q_{c}{ }^{\prime \prime}$	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
N(1)	$7 \cdot 46$	$7 \cdot 58$	$44 \cdot 0$	$45 \cdot 6$	333	226	290	-145	540	-211
P (2)	$18 \cdot 10$	$18 \cdot 40$	$109 \cdot 4$	$110 \cdot 5$	208	191	375	-38	297	-128
N(3)	6.97	$7 \cdot 05$	$39 \cdot 8$	$40 \cdot 7$	293	222	490	- 125	458	-167 -57
$\mathrm{P}(4)$	$18 \cdot 18$	$18 \cdot 53$	$109 \cdot 0$	$110 \cdot 6$	205	199	306	-56	291	-57
N(5)	7.96	7.89	$50 \cdot 8$	$51 \cdot 6$	335	317	262	-193	519	-100
P(6)	$18 \cdot 34$	18.06	$107 \cdot 1$	$106 \cdot 8$	330	155	257	-43	347	15 -141
$\mathrm{Cl}(1)$	13.83	14.00	$70 \cdot 2$	$70 \cdot 7$	195	406	874	-200	341	- 141
$\mathrm{Cl}(2)$	$15 \cdot 27$	$15 \cdot 37$	$83 \cdot 4$	$83 \cdot 0$	372	230	702	231	544	51

Table 3. Electron densities ($\mathrm{e} . \AA^{-3}$), mean curvatures (e. \AA^{-5}) and isotropic temperature factors $\left(\AA^{2}\right)$ for the C atoms Molecule I

Atom	@o	ϱ_{c}	$-0^{\prime \prime}$	$-\varrho_{c}{ }^{\prime \prime}$	B
C(1)	$5 \cdot 60$	$5 \cdot 56$	$30 \cdot 3$	$30 \cdot 4$	4.57
C(2)	$4 \cdot 68$	$4 \cdot 69$	$23 \cdot 6$	23.7	6.33
C(3)	$4 \cdot 22$	$4 \cdot 18$	$19 \cdot 6$	$19 \cdot 2$	$7 \cdot 56$
C(4)	$4 \cdot 11$	$3 \cdot 84$	$14 \cdot 9$	$15 \cdot 3$	8.39
C(5)	$4 \cdot 08$	3.99	$18 \cdot 2$	$17 \cdot 8$	7.38
C(6)	5.06	5.03	$25 \cdot 3$	$25 \cdot 6$	$5 \cdot 78$
C(7)	$5 \cdot 86$	$5 \cdot 86$	$33 \cdot 1$	$33 \cdot 0$	4.25
C(8)	$5 \cdot 04$	4.96	$29 \cdot 5$	28.6	5.44
C(9)	$4 \cdot 88$	$4 \cdot 74$	$26 \cdot 1$	$24 \cdot 7$	5.77
$\mathrm{C}(10)$	$4 \cdot 40$	$4 \cdot 45$	$20 \cdot 3$	$20 \cdot 8$	$6 \cdot 50$
C(11)	$4 \cdot 37$	$4 \cdot 46$	$21 \cdot 1$	$22 \cdot 4$	6.55
C(12)	$4 \cdot 80$	$4 \cdot 88$	22.0	$23 \cdot 1$	5.55
C(13)	$5 \cdot 56$	$5 \cdot 48$	$30 \cdot 8$	30.0	5.04
C(14)	$4 \cdot 47$	$4 \cdot 57$	24.0	23.9	6.82
$\mathrm{C}(15)$	$4 \cdot 18$	4.06	19.7	$17 \cdot 9$	6.74
$\mathrm{C}(16)$	$3 \cdot 44$	$3 \cdot 50$	$12 \cdot 7$	$13 \cdot 8$	8.97
$\mathrm{C}(17)$	3.91	3.94	$17 \cdot 0$	18.7	8.45
C (18)	$4 \cdot 42$	$4 \cdot 47$	21.0	21.7	$6 \cdot 42$
$\mathrm{C}(19)$	6.04	$6 \cdot 02$	32.0	32.6	$4 \cdot 14$
C (20)	$5 \cdot 10$	$5 \cdot 17$	27.7	$27 \cdot 7$	4.87
C (21)	$4 \cdot 58$	4.66	21.9	23.1	$6 \cdot 41$
C(22)	$4 \cdot 74$	$4 \cdot 70$	21.9	21.8	6.61
C(23)	$4 \cdot 15$	$4 \cdot 01$	19.5	$18 \cdot 8$	7.62
C(24)	$4 \cdot 99$	4.93	$26 \cdot 1$	$25 \cdot 7$	$6 \cdot 32$
Molecule II					
C(1)	5.60	$5 \cdot 60$	31.4	31.5	4.61
C(2)	$4 \cdot 50$	$4 \cdot 49$	21.7	21.7	$6 \cdot 36$
C(3)	$3 \cdot 81$	$3 \cdot 89$	$16 \cdot 6$	$17 \cdot 5$	$8 \cdot 28$
C(4)	$4 \cdot 00$	3.94	$16 \cdot 2$	$17 \cdot 0$	8.94
C(5)	$3 \cdot 67$	$3 \cdot 83$	14.9	$16 \cdot 2$	8.65
C(6)	$4 \cdot 22$	$4 \cdot 44$	$20 \cdot 8$	$22 \cdot 1$	6.51
C(7)	5.71	$5 \cdot 68$	$31 \cdot 1$	31.6	$4 \cdot 31$
C(8)	$5 \cdot 16$	$5 \cdot 24$	28.2	$28 \cdot 4$	$5 \cdot 81$
C(9)	$4 \cdot 84$	$4 \cdot 76$	$25 \cdot 9$	$25 \cdot 0$	6.05
$\mathrm{C}(10)$	$4 \cdot 17$	$4 \cdot 25$	17.0	$17 \cdot 7$	6.59
$\mathrm{C}(11)$	$4 \cdot 20$	$4 \cdot 25$	$19 \cdot 3$	$20 \cdot 3$	6.31
$\mathrm{C}(12)$	4.86	$4 \cdot 96$	$22 \cdot 5$	$23 \cdot 7$	$5 \cdot 59$
C(13)	$5 \cdot 65$	$5 \cdot 57$	$32 \cdot 1$	31.3	$5 \cdot 00$
C(14)	$4 \cdot 35$	$4 \cdot 43$	$23 \cdot 3$	$22 \cdot 9$	$6 \cdot 57$
C(15)	3.91	$3 \cdot 93$	$19 \cdot 1$	$18 \cdot 8$	$7 \cdot 80$
$\mathrm{C}(16)$	$3 \cdot 26$	$3 \cdot 12$	9.7	9.1	8.59
$\mathrm{C}(17)$	3.96	$3 \cdot 80$	$16 \cdot 4$	$17 \cdot 4$	8.60
$\mathrm{C}(18)$	4.07	$4 \cdot 14$	18.0	19.0	$6 \cdot 67$
C (19)	$5 \cdot 89$	$5 \cdot 95$	31.4	31.7	4.03
C (20)	5.03	$5 \cdot 18$	27.5	28.0	4.97
C(21)	$4 \cdot 42$	$4 \cdot 43$	$20 \cdot 3$	$20 \cdot 8$	6.08
C(22)	$4 \cdot 44$	$4 \cdot 37$	21.7	$21 \cdot 1$	6.43
C(23)	$4 \cdot 33$	$4 \cdot 13$	$21 \cdot 2$	$20 \cdot 1$	$7 \cdot 26$
C(24)	$4 \cdot 64$	$4 \cdot 58$	$23 \cdot 2$	$22 \cdot 5$	$6 \cdot 26$

Table 4. Fractional coordinates of the hydrogen atoms and their electron-density maxima (e. \AA^{-3})
The theoretical positions for the unobserved atoms are indicated with an asterisk Molecule I

Atom	x	y	z	Q_{0}
$\mathrm{H}(2)$	0.280	-0.062	0.218	0.40
$\mathrm{H}(3)$	0.374	-0.072	0.337	0.40
$\mathrm{H}(4)$	0.454	-0.017	0.357	$*$
$\mathrm{H}(5)$	0.448	0.055	0.239	0.36
$\mathrm{H}(6)$	0.355	0.058	0.130	0.42
$\mathrm{H}(8)$	0.203	0.057	0.181	0.35
$\mathrm{H}(9)$	0.163	0.148	0.192	0.40
$\mathrm{H}(10)$	0.160	0.227	0.105	0.40

Table 4 (cont.)

Atom	x	y	z	ϱ_{0}
$\mathrm{H}(11)$	0.189	0.209	-0.003	$*$
$\mathrm{H}(12)$	0.228	0.112	-0.009	0.50
$\mathrm{H}(14)$	0.242	0.058	-0.155	0.39
$\mathrm{H}(15)$	0.178	0.100	-0.300	0.36
$\mathrm{H}(16)$	0.077	0.067	-0.372	$*$
$\mathrm{H}(17)$	0.038	-0.017	-0.323	0.29
$\mathrm{H}(18)$	0.114	-0.067	-0.198	0.35
$\mathrm{H}(20)$	0.357	-0.005	-0.006	0.36
$\mathrm{H}(21)$	0.442	-0.052	-0.008	0.40
$\mathrm{H}(22)$	0.420	-0.123	-0.117	0.40
$\mathrm{H}(23)$	0.318	-0.153	-0.193	0.50
$\mathrm{H}(24)$	0.238	-0.122	-0.176	0.47

Molecule II

Atom	x	y	z	ϱ_{o}
$\mathrm{H}(2)$	0.529	0.187	0.205	0.50
$\mathrm{H}(3)$	0.617	0.178	0.325	0.50
$\mathrm{H}(4)$	0.704	0.233	0.357	$*$
$\mathrm{H}(5)$	0.705	0.298	0.253	0.30
$\mathrm{H}(6)$	0.602	0.310	0.122	0.40
$\mathrm{H}(8)$	0.455	0.305	0.177	0.40
$\mathrm{H}(9)$	0.417	0.383	0.189	0.50
$\mathrm{H}(10)$	0.412	0.480	0.102	0.37
$\mathrm{H}(11)$	0.439	0.459	-0.003	$*$
$\mathrm{H}(12)$	0.480	0.365	-0.012	0.70
$\mathrm{H}(14)$	0.489	0.303	-0.155	0.30
$\mathrm{H}(15)$	0.433	0.350	-0.293	0.35
$\mathrm{H}(16)$	0.327	0.317	-0.372	0.32
$\mathrm{H}(17)$	0.295	0.323	-0.317	$*$
$\mathrm{H}(18)$	0.362	0.188	-0.198	0.45
$\mathrm{H}(20)$	0.607	0.245	-0.006	$*$
$\mathrm{H}(21)$	0.690	0.193	-0.020	0.45
$\mathrm{H}(22)$	0.672	0.27	-0.110	0.42
$\mathrm{H}(23)$	0.580	0.090	-0.190	0.33
$\mathrm{H}(24)$	0.490	0.122	-0.168	0.45

Table 5. Agreement summary
2028 observed reflections ($21 \cdot 2 \leq\left|F_{o}\right| \leq 1075 \cdot 6$)

$R=0.091$		
Category	Limits	Number
	$\|\Delta F\| \leq 1 \cdot 0\left\|F_{\text {th }}\right\|$, or	
	$\|\Delta F\| /\left\|F_{o}\right\| \leq 0.18$	2018
2	$1 \cdot 0\left\|F_{\text {ch }}\right\|<\|\Delta F\| \leq 2.0\left\|F_{\text {th }}\right\|$, or	
	$0 \cdot 18<\|\Delta F\| /\left\|F_{0}\right\| \leq 0.27$	10
4599 unobserved reflections ($\left.\left\|F_{c}\right\|_{\text {max }}=66 \cdot 8\right)$		
1	$\left\|F_{c}\right\| \leq 1 \cdot 0\left\|F_{\text {th }}\right\|$	4376
2	$1 \cdot 0\left\|F_{\text {th }}\right\|<\left\|F_{c}\right\| \leq 1.5\left\|F_{\text {th }}\right\|$	218
3	$1 \cdot 5\left\|F_{\mathrm{th}}\right\|<\left\|F_{c}\right\| \leq 2 \cdot 0\left\|F_{\mathrm{th}}\right\|$	- 5

Barnes, 1963) is presented in Table 5. The bond lengths and bond angles, not corrected for thermal vibrations, and their e.s.d.'s (International Tables for X-ray Crystallography, 1959, p.331) are recorded in Fig.2. The C-H bonds have a mean value of $1.068 \AA(\sigma=0.071 \AA)$ which is directly comparable with that in diphenyltetrachlorocyclotriphosphazene.

Discussion

Because of the relatively small proportion of observed reflections, resulting in part from the special relationship between the two molecules in the asymmetric unit,
very high accuracy was not to be expected in the present structure investigation, and the e.s.d.'s of the bond lengths and angles are higher than those in the structure determination of diphenyltetrachlorocyclotriphosphazene. The χ^{2} and t tests carried out on the discrepancies among chemically equivalent bonds and equivalent angles in the two molecules of the asymmetric unit of the tetraphenyl compound showed that the errors are not significant except in the case of the $\mathrm{P}-\mathrm{Cl}$ bonds. For the four $\mathrm{P}-\mathrm{Cl}$ bonds, $\chi^{2}=17.7$ and for $v=3, P<$ 0.1%; in each of the two molecules, one bond has alength of about $2.01 \AA$ while the second has a length of about $2.03 \AA$ with $\sigma=0.005 \AA$ (Fig. 2). Differences among the lengths of the $\mathrm{C}-\mathrm{C}$ bonds cannot be considered as significant because of the disappointingly high e.s.d.'s of the final results. It is of interest, however, that the mean C-C bond length is $1.376(\sigma=0.033) \AA$ which is virtually identical with the mean value of 1.377 ($\sigma=$ $0.014) \AA$ in the diphenyl compound; as mentioned previously (Mani, Ahmed \& Barnes, 1965) the omission of any corrections for thermal vibrations may account to a small extent for the decrease in these values from that to be expected for an aromatic $\mathrm{C}-\mathrm{C}$ bond.

The sixteen C-P-N angles vary from $106 \cdot 6^{\circ}$ to $111 \cdot 8^{\circ}$ (Fig.2) and, therefore, cannot be considered as all equal; this is to be expected because they are not all chemically equivalent. Those angles which are chemically equivalent, however, differ by values which are not significant.

The mean values of chemically equivalent bonds and angles of particular interest, and their r.m.s. standard deviations, are listed in Table 6; corresponding values in the two molecules of the asymmetric unit have been included in the means. The last two columns have been reproduced from Table 6 of Mani, Ahmed \& Barnes (1965) to facilitate comparison with data for diphenyltetrachlorocyclotriphosphazene. The designation of the types of bonds and angles is the same for both compounds but a distinction has been made between the $\mathrm{P}-\mathrm{N}$ bond of type a^{\prime} in $\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$ and type a in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$, and between the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle of type $\theta(1)^{\prime}$ in the former and type $\theta(1)$ in the latter, because the ligands on the P atoms are phenyl groups in the first and chlorine atoms in the second. Thus, although the $\mathrm{P}-\mathrm{N}$ bonds of types a^{\prime} and a have the same length the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angles of types $\theta(1)^{\prime}$ and $\theta(1)$ differ by 5.7°

Fig. 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$, with e.s.d.'s in parentheses, for the two molecules in the asymmetric unit.

There is also a difference of 1.8° between the mean values of the $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ angles of the type $\theta(5)$ in the two compounds. Both of these differences are statistically significant, and the difference ($0.019 \AA$) between the $\mathrm{P}-\mathrm{Cl}$ bonds (type d) may also be significant. Otherwise the mean bonds and angles of the same types are in very good agreement in the two compounds.

Finally it may be noted that in the present structure, as in the previous one (Mani, Ahmed \& Barnes, 1965), no intermolecular distances are less than van der Waals contacts.

Planarity of the rings

The equations for the mean planes through the cyclotriphosphazene, phenyl I [C(1) to C(6)], phenyl II $[C(7)$ to $C(12)]$, phenyl III [$C(13)$ to $C(18)]$, and phenyl IV [C(19) to $\mathbf{C}(24)$] rings of the two molecules in the asymmetric unit, and referred to orthogonal axes, $x^{\prime}=$ $x+z \cos \beta, y^{\prime}=y, z^{\prime}=z \sin \beta$ are as follows:

Molecule I

Phosphazene

$$
\begin{equation*}
0.6412 x^{\prime}-0.5400 y^{\prime}+0.5451 z^{\prime}-3.9557=0 \tag{1}
\end{equation*}
$$

Phenyl I

$$
\begin{equation*}
0.5412 x^{\prime}-0.7125 y^{\prime}-0.4465 z^{\prime}-2.2447=0 \tag{2}
\end{equation*}
$$

Phenyl II

$$
\begin{equation*}
0.7156 x^{\prime}+0.2801 y^{\prime}+0 \cdot 6398 z^{\prime}-4.7642=0 \tag{3}
\end{equation*}
$$

Phenyl III

$$
\begin{equation*}
0.6729 x^{\prime}-0.5964 y^{\prime}-0.4374 z^{\prime}-5.3533=0 \tag{4}
\end{equation*}
$$

Phenyl IV
$0.1935 x^{\prime}+0.6927 y^{\prime}-0.6947 z^{\prime}-1.5696=0$

Molecule II

Phosphazene

$$
\begin{equation*}
0.6427 x^{\prime}-0.5408 y^{\prime}+0.5427 z^{\prime}-4.8286=0 \tag{6}
\end{equation*}
$$

Phenyl I

$$
\begin{equation*}
0.5445 x^{\prime}-0.7314 y^{\prime}-0.4104 z^{\prime}-1.4979=0 \tag{7}
\end{equation*}
$$

Phenyl II

$$
\begin{equation*}
0.7241 x^{\prime}+0.2468 y^{\prime}+0.6433 z^{\prime}-10.7759=0 \tag{8}
\end{equation*}
$$

Phenyl III

$$
\begin{equation*}
0.6457 x^{\prime}-0.6245 y^{\prime}-0.4390 z^{\prime}-5.5710=0 \tag{9}
\end{equation*}
$$

Phenyl IV

$$
\begin{equation*}
0.1827 x^{\prime}+0.6781 y^{\prime}-0.7116 z^{\prime}-6.5703=0 \tag{10}
\end{equation*}
$$

Both cyclotriphosphazene rings are definitely nonplanar, because $\chi^{2}=860$ for molecule I and $\chi^{2}=1074$ for molecule II, with $\nu=3$ and $P \ll 0 \cdot 001$ in both cases. Each has a slight boat form with considerable distortion because the members of every pair of opposite sides of the pseudohexagonal ring slope in opposite directions.
In molecule I, χ^{2} for the phenyl rings varies from 3.6 to 8.0 , while in molecule II it varies from 0.4 to 4.5. Deviations from the mean planes of the rings (equations 2 to $5 ; 7$ to 10), however, are not statistically significant and all phenyl rings, therefore, must be considered as exactly planar.
The angles between the mean planes of corresponding rings in molecules I and II are 0.5° for phosphazene, $2 \cdot 5^{\circ}$ for phenyl I, $2 \cdot 7^{\circ}$ for phenyl II, $2 \cdot 6^{\circ}$ for phenyl III, and $2 \cdot 0^{\circ}$ for phenyl IV.

A projection of the dichlorotetraphenylcyclotriphosphazene molecule (excluding H atoms) along the nor-

Table 6. Mean values of the bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the dichlorotetraphenyl and diphenyltetrachloro cyclotriphosphazenes, and their r.m.s. standard deviations

mal to the mean plane of the cyclotriphosphazene ring is presented in Fig.3. To facilitate direct comparison of the perpendicular distances of the atoms of molecules I and II from the planes of their respective cyclotriphosphazene rings the diagram has been constructed from the mean coordinates of corresponding atoms of the two molecules but the distances of each atom are shown in pairs, the top values are those for molecule I and the bottom ones are those for molecule II. It is apparent from Fig. 3 that each dichlorotetraphenylcyclotriphosphazene molecule has an approximate diad axis along a line through $\mathrm{P}(2)$ and $\mathrm{N}(5)$; this does not coincide, however, with the diad axis of the space group. The mirror plane through a nitrogen and a phosphorus atom in para positions, and through the two halogen atoms bonded to the phosphorus atom, which occurs in molecules of the corresponding hexahalogencyclotriphosphazenes, $\mathrm{F}_{6} \mathrm{P}_{3} \mathrm{~N}_{3}$ (Dougill, 1963), $\mathrm{Cl}_{6} \mathrm{P}_{3} \mathrm{~N}_{3}$ (Giglio, 1960; Wilson \& Carroll, 1960), and $\mathrm{Br}_{6} \mathrm{P}_{3} \mathrm{~N}_{3}$ (De Santis, Giglio \& Ripamonti, 1962) is no longer present in either $\mathrm{Cl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{P}_{3} \mathrm{~N}_{3}$ or $\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$.

Comparison of the $\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{4} \mathrm{P}_{3} \mathrm{~N}_{3}$ molecules

For brevity the two molecules in the asymmetric unit of dichlorotetraphenylcyclotriphosphazene, $\mathrm{Cl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}$ $\mathrm{P}_{3} \mathrm{~N}_{3}$, will be referred to as molecules $A(\mathrm{I})$ and $A(\mathrm{II})$, or collectively as molecule A, and the molecule of diphenyltetrachlorocyclotriphosphazene (Mani, Ahmed \& Barnes, 1965) as molecule B.

Although the cyclotriphosphazene, $\mathrm{P}_{3} \mathrm{~N}_{3}$, ring in molecules A and B is only slightly, but significantly, nonplanar, it has a puckered boat form (no two opposite sides are parallel, but slope in opposite directions) in
molecules $A(\mathrm{I})$ and $A(\mathrm{II})$, whereas it has an almost regular (but slight) chair form in molecule B. The three types of $\mathrm{P}-\mathrm{N}$ bond in molecule B also occur in molecule A (Table 6), and the previous discussion of special features of various segments and angles of the ring in molecule B (Mani, Ahmed \& Barnes, 1965) also apply to molecule A. The only results to which attention need be drawn at this stage are the equality of the average $\mathrm{P}-\mathrm{N}$ bond lengths of types a (molecule B) and a^{\prime} (molecule A) in the segment $\mathrm{P}(4)-\mathrm{N}(5)-\mathrm{P}(6)$ where the ligands are chlorine atoms on $\mathrm{P}(4)$ and $\mathrm{P}(6)$ in molecule B but are phenyl groups in molecule A, and the increase in the mean angle $\mathrm{P}(4)-\mathrm{N}(5)-\mathrm{P}(6)$ from $119 \cdot 2^{\circ}$ for $\theta(1)$, molecule B, to $124 \cdot 9^{\circ}$ for $\theta(1)^{\prime}$, molecule A.
In both molecules A and B there appear to be significant differences among the lengths of the $\mathrm{P}-\mathrm{Cl}$ bonds (Fig. 2 of the present paper, and Fig. 3 of Mani; Ahmed \& Barnes, 1965), and in general, these bonds are longer than those reported by Wilson \& Carroll (1960), 1.97 to $1.98 \AA$, and by Giglio (1960), 1.949 to 1.989 (mean, 1.967) \AA for $\mathrm{Cl}_{6} \mathrm{P}_{3} \mathrm{~N}_{3}$. The distance between $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ bonded to $\mathrm{P}(2)$ in molecules $A(\mathrm{I})$ and $A(\mathrm{II})$ is $3.054 \AA$ in each case; in molecule B it is $3.067 \AA$ between $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ bonded to $\mathrm{P}(4)$ and $3.070 \AA$ between $\mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$ bonded to $\mathrm{P}(6)$; these distances are much less than a normal van der Waals contact of about $3.6 \AA$ but are somewhat larger than the Cl to Cl separations of $2.87 \AA$ in carbon tetrachloride and $2.92 \AA$ in methylene chloride and in chloroform (Pauling, 1960). Also, the four N to Cl distances around $\mathrm{P}(2)$ in molecules $A(\mathrm{I})$ and $A(\mathrm{II})$ are $2 \cdot 900$ to 2.944 (mean, 2.917) \AA and 2.899 to 2.962 (mean, 2.919) \AA, respectively, while in molecule B they are 2.882 to 2.920 (mean, 2.906) \AA around $\mathrm{P}(4)$ and 2.894 to 2.946 (mean, $2 \cdot 909$) \AA around $\mathrm{P}(6)$; again these distances are much

Fig.3. The mean plane of the mean cyclotriphosphazene ring showing the perpendicular distances (\AA) of the atoms from it for the two molecules in the asymmetric unit (top values, molecule I; bottom values, molecule II).
less than the sum (approximately $3.3 \AA$) of the van der Waals radii.

The angles among the mean planes of the phenyl rings are 84.4° between phenyls I \& II and 88.8° between phenyls III \& IV in molecule $A(\mathrm{I}), 87 \cdot 1^{\circ}$ and 89.6° for the corresponding pairs in molecule $A($ II $)$ (Fig.1) and 83.7° between phenyls I \& II bonded to $\mathrm{P}(2)$ in molecule B [Fig. 2 of Mani, Ahmed \& Barnes (1965)]; mean (all values), $86 \cdot 7^{\circ}\left(\sigma=2 \cdot 6^{\circ}\right)$. The planes of the two phenyl rings bonded to the same phosphorus atom, therefore, are almost perpendicular to each other in all cases.

It is also of interest to note that the angle between the mean planes of phenyls I \& IV is 85.5° in molecule $A(\mathrm{I})$ and 84.0° in molecule $A(\mathrm{II})$, while that between the mean planes of phenyls II \& III is 88.0° in molecule $A(\mathrm{I})$ and 88.2° in molecule $A(\mathrm{II})$; mean (all values), $86 \cdot 4^{\circ}\left(\sigma=2 \cdot 0^{\circ}\right)$. Thus, the two cis phenyl rings which are bonded to different phosphorus atoms (Fig. 1) also are approximately perpendicular to each other. Finally, the mean planes of phenyls I \& III are nearly parallel to each other [angle phenyl I-phenyl $\mathrm{III}=10 \cdot 1^{\circ}$, molecule $A(\mathrm{I})$, and $8 \cdot 7^{\circ}$, molecule $\left.A(\mathrm{II})\right]$, whereas the mean planes of phenyls II \& IV are almost perpendicular to each other [angle phenyl II-phenyl IV $=83 \cdot 6^{\circ}$, molecule $A(\mathrm{I})$, and $80 \cdot 9^{\circ}$, molecule $\left.A(\mathrm{II})\right]$.

The configuration of the four bonds to the same phosphorus atom is of special interest. Thus, the angles between the planes $\mathrm{X}-\mathrm{P}-\mathrm{X}$ (where $\mathrm{X}=\mathrm{Cl}$ or C) and the planes $\mathrm{N}-\mathrm{P}-\mathrm{N}$ with the same phosphorus atom in common are $88.8^{\circ}, 88 \cdot 6^{\circ}$, and 88.5° at $\mathrm{P}(2)$ in molecules $A(\mathrm{I}), A(\mathrm{II})$, and B, respectively; they are $88 \cdot 1^{\circ}, 88 \cdot 8^{\circ}$, and $89 \cdot 0^{\circ}$ at $\mathrm{P}(4)$, and $88 \cdot 5^{\circ}, 88 \cdot 7^{\circ}$, and $89 \cdot 0^{\circ}$ at $\mathrm{P}(6)$. The mean of all values is $88.7^{\circ}\left(\sigma=0 \cdot 3^{\circ}\right)$, and the planes $\mathrm{X}-\mathrm{P}-\mathrm{X}$ and $\mathrm{N}-\mathrm{P}-\mathrm{N}$, therefore, are nearly normal to each other in all cases. Furthermore, although the exocyclic X-P-X angles are different from the value for a tetrahedral angle and also depend on whether X is Cl or C , the mean of each pair of an $\mathrm{X}-\mathrm{P}-\mathrm{X}$ and its opposite $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle varies only from 109.5° to $110 \cdot 2^{\circ}$, with an overall mean of $109 \cdot 8^{\circ}$ when X is C , and 109.9° when X is Cl , neither of which is significantly different from the tetrahedral angle of $109 \cdot 4^{\circ}$. The tetrahedron around P, however, is severely distorted by the pseudo-hexagonal cyclotriphosphazene ring as shown by the fact that when the ligands are two Cl atoms, the mean $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle is $120 \cdot 2^{\circ}$ (range, 119.7° to $121 \cdot 1^{\circ}$) while the mean $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ angle is only 99.4° (range, $98 \cdot 3^{\circ}$ to $100 \cdot 4^{\circ}$), and with two phenyl groups as ligands the mean $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle is $115 \cdot 5^{\circ}$ (range, $115 \cdot 0^{\circ}$ to $116 \cdot 1^{\circ}$) and the mean C-P-C angle is $104 \cdot 4^{\circ}$ (range, $104 \cdot 1^{\circ}$ to $104 \cdot 7^{\circ}$). Furthermore, the effect of the ligands on the cyclotriphosphazene ring is to reduce the hexagonal angle of 120° by about 5° when a pair of Cl atoms is replaced by a pair of the larger phenyl groups with a corresponding increase of about 5° in the $\mathrm{X}-\mathrm{P}-\mathrm{X}$ angle. The increase in the mean angle
$\mathrm{P}(4)-\mathrm{N}(5)-\mathrm{P}(6)$ by almost 6° in molecule A may have the effect of reducing strain in the cyclotriphosphazene ring resulting from the decrease in the angles $\mathrm{N}(1)-$ $\mathrm{P}(6)-\mathrm{N}(5)$ and $\mathrm{N}(3)-\mathrm{P}(4)-\mathrm{N}(5)$, although the decrease from 120° in the single angle $\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(3)$ in molecule B appears to have had a lesser effect on the other internal angles of the ring except for a possibly significant increase in the adjacent angles $\mathrm{P}(2)-\mathrm{N}(1)-\mathrm{P}(6)$ and $\mathrm{P}(2)-\mathrm{N}(3)-\mathrm{P}(4)$.
The configurations of the phenylchlorocyclotriphosphazene molecules, therefore, appear to be governed by a number of factors, namely, tetrahedral bonds to the phosphorus atoms versus a planar hexagonal cyclotriphosphazene ring, the effect of the ligands on the $\mathrm{P}-\mathrm{N}$ bond lengths and on the internal $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angles of the ring, van der Waals interactions between the two ligands on each phosphorus atom in addition to those between the ligands and the closest nitrogen atoms of the ring, and, of course, packing considerations in the structures of the crystals of the individual compounds.
The nomenclature adopted throughout this and the preceding paper (Mani, Ahmed \& Barnes, 1965) is essentially that of Shaw, Fitzsimmons \& Smith (1962).

The programs of Ahmed, Gabe, Mair \& Pippy (1963) for the IBM 1620 computer were employed in the present investigation. The original crystals were supplied by Dr R.A.Shaw, Birkbeck College, London, and were subsequently recrystallized under various temperature conditions in our laboratory. Grateful acknowledgement is made to Mrs M.E.Pippy for assistance with the computations, and to the staff of the N.R.C. Computation Centre for their cooperation.

References

Ahmed, F. R. \& Barnes, W. H. (1963). Acta Cryst. 16, 1249.

Ahmed, F. R., Gabe, E. J., Mair, G. A. \& Pippy, M. E. (1963). A Unified Set of Crystallographic Programs for the IBM 1620 Computer. Unpublished.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65, 154.
Cruickshank, D. W. J. (1950). Acta Cryst. 3, 72.
De Santis, P., Giglio, E. \& Ripamonti, A. (1962). Inorg. Nucl. Chem. 24, 469.
Dougill, M. W. (1963). J. Chem. Soc. p. 3211.
Giglio, E. (1960). Ric. Sci. 30, 721.
International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Mani, N. V., Ahmed, F. R. \& Barnes, W. H. (1965). Acta Cryst. 19, 693.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Shaw, R. A., Fitzsimmons, B. W. \& Smith, B. C. (1962). Chem. Revs. 62, 247.
Wilson, A. \& Carroll, D. F. (1960). J. Chem. Soc. p. 2548.

[^0]: * National Research Council Postdoctorate Fellow.

